Home / Intelligence / Blog / AIML-Based Patient Finding—Threading the Needle in the Haystack
Published July 21, 2023
For life sciences companies focused on rare diseases, accurate patient finding is a worthy challenge—one deserving dedicated time and resource to tackling and solving. The benefit of enrolling even one new patient is large, both for the lives of patients in need and the commercial success of the therapies.
Why is patient finding in rare disease such a challenge?
The hallmarks of a rare disease work against traditional targeting methods: small patient population sizes, complex disease recognition, lengthy roads to diagnosis, fewer physicians who are familiar with the disease and restrictive eligibility criteria for therapies.
How can life sciences companies successfully find patients?
Cutting edge technology, applied with life sciences expertise, can help find the needle in the haystack. AIML (Artificial Intelligence & Machine Learning) can greatly increase targeting precision. Just as interestingly, it can also help to “thread” that needle—to improve field force effectiveness.
Yet it is not enough to point AIML tools, methodology and technology at the problem. Without the knowledge to refine and calibrate models, new patients may remain elusive.
Evaluating and selecting source data is a key success driver. Perhaps even harder to find, it takes experience with therapeutic areas combined with the AIML expertise to fully optimize feature selection and approach.
Finally, speed to result is critical, especially in an arena where every new start is high value. Designing and deploying AIML models—and enrolling new patients—in weeks vs. months is vital.
Trinity Case Study
Improving targeting precision and field force direction through AIML-based patient finding
Background
- A global rare disease company was looking to improve targeting precision and support field team effectiveness
- Attempts by a prior analytics partner to use rule-based alerts failed, and even after two years, no new patients had been identified
Trinity’s Solution
- Create an AIML model that identifies clinically on-label patients—rather than simply patients with the disease
- ‘Learn’ from on-therapy patients to identify how patients present prior to therapy initiation and execute AIML models to flag patients based on the probability that they are candidates for treatment
- Deploy bifurcated notifications to both inside and field-based reps through ‘push’ alerts within the client’s CRM and enable ‘pull’ solutions to support call planning
Project Outcomes
Designed and deployed AIML models for three indications in 8 weeks
Narrowed field team focus from >25,000 HCPs to ~1,000 highest priority HCPs
Identified 100 high probability targets within first 2 months of launch
At least 5 patients confirmed to be clinically on-label for therapy within first 2 months
First new patient enrolled within 5 weeks of initiating alerts
Download the case study
Explore further thought leadership on Patient Finding
Related Intelligence
Blog
Can GenAI be Used to Improve Data Operations Efficiency?
The short answer is yes, by powering process automation with GenAI. It’s an approach that hasn’t received as much attention as other GenAI use cases within life sciences, but the results can be very powerful. To illustrate its power, we’ll examine a case study on identifying debarred healthcare professionals (HCPs). Why is it important to […]
Read More
Case Studies
Improving Data Operations Efficiency through GenAI-Powered Process Automation
The Situation Pharmaceutical companies are mandated to cease all forms of engagement with debarred healthcare professionals (HCPs) in the U.S. Compliance entails identifying and flagging HCPs from lists periodically released by government agencies. These agencies also issue exclusion notices that call out HCPs whomight be confused with debarred HCPs due to similar names and/or other […]
Read More
Blog
The Next Wave of Global AI Medical Devices: Innovation in Action
A recent bipartisan initiative by Senators Martin Heinrich, Mike Rounds, Marsha Blackburn and Todd Young urged the Centers for Medicare & Medicaid Services (CMS) to establish a formal payment pathway for algorithm-based health care services (ABHS). This move addresses the need for stable Medicare reimbursement for FDA-cleared AI and machine learning (ML) medical devices, which […]
Read More